
Hexapod Robot
Yichun Gao, Chengyuan Li, Yihan Li
gyc1999, lichengyuan, yianlee@berkeley.edu

Abstract
This project focuses on the development of a

hexapod robot. We used the gait algorithms to build the
system for basic motion control, and then developed
different capabilities for the robot including object tracking,
bluetooth control and obstacle avoidance. The basic
motions include moving straight, rotation and keeping
balance, which are developed by modeling and feedback
control. Based on that, the robot can either track a human
automatically or be controlled by humans to move around
while avoiding obstacles. For different capabilities
mentioned above, comprehensive sensors and multitasking
are used to achieve corresponding goals.

1. Materials

1.1 Hardwares

1.1.1 Development Board
The main requirement of the development board is

to execute the program for controlling our robot. It means
that it needs decent processing speed, enough memory, a
mature robot control system and sufficient library
resources. Based on these considerations, the Raspberry Pi
3b+ is our best choice because it also offers enough GPIO
pins and USB ports for input and output signals.

Fig.1 Raspberry Pi 3b+

For wireless control, bluetooth is used for message
transmission. Since the Raspberry Pi 3b+ supports classic
bluetooth protocol, an Arduino UNO R3 (Fig.2) is used to
control a HC-05 bluetooth serial pass-through module to
transfer the movement of a joystick.

Fig.2 Arduino UNO R3

1.1.2 Sensors
Our raspberry pi board carries three kinds of

sensors: camera (OV5647 Camera Module, Fig.3), IMU
sensor and ultrasonic sensor (HC-SR04, Fig.3).

Fig.3 Camera (left) and ultrasonic sensor (right)

1.1.2 Wireless Communication Module
A HC-05 bluetooth module (Fig.4) is used for

wireless data transmission because it allows classical
bluetooth protocol, which is faster than the speed of BLE.

Fig.4 HC-05 bluetooth module

mailto:gyc1999@berkeley.edu
mailto:lichengyuan@berkeley.edu
mailto:email3@berkeley.edu


1.2 Software
We installed Raspberry OS for our project, and we

use python as our programming language because the
command in python is brief and we can use python
threading to deal with the multitasking problem.

2. Preliminaries

2.1 Movement Control
The movement control problem of a hexapod

robot is to move the tip of a leg to a 3D coordinate. The
goal is to solve the angle of the three motors on a leg when
given the 3D coordinate of the tip of a leg (Fig.5). Assume
α, β and γ are the angles of the motors, and L1 and L2 are
the lengths of the two parts of a leg:

the solution of α, β and γ is as follows:

Let ,

By using these equations, the angle of each motor
can be calculated and assigned.

Fig.5 Hexapod robot kinematic model

With this model, we can control the tip of each leg
to move to the desired position, which allows us to run gait
algorithms.

2.2 Gait Algorithms
The gait algorithm is to let a robot know where it

should place its legs exactly in each step. It should allow a
robot to go straight and rotate on a 2D plane. The algorithm
is designed based on the decomposition of velocity and
movement discretization. To be specific, the velocity data
in a control command includes linear velocity, x and y, and
rotational velocity, a. The coordinate transformation can be
realized by the following matrix:

Denoting p0 = [x0, y0]T, p1 = [x1, y1]T, v = [x, y]T and A(a) as
the rotation matrix, we have p1 = A(a) * p0 + v, which is
shown in Fig.6. Since we can only apply a discrete
kinematic system in a program, the equation is actually pi =
(A(a/steps) * p0 + v/steps) and pn = Σpi. The pi is the
coordinate for the tip of a leg in each step.

Fig.6 Composition of linear velocity and rotational velocity

Next, a hexapod robot should know which leg it
should move. We have two algorithms for this part. The
first one is to move 3 legs forward in air and leave the other
3 legs on the ground in each step (Fig.7), so the legs are
divided into 2 groups with different colors. Their
movements in one cycle are shown on the right side of
Fig.7 . The F is the cycle time and the L is the least distance
that the tip of a leg will move in one step. The less the F is
or the bigger the L is, the faster the robot can move.

Fig.7 3 by 3 gait algorithm



The second one is to move 1 leg forward in air and leave
the other 5 legs on the ground in each step (Fig.8), which
allows the robot to move more stably.

Fig.8 1 by 1 gait algorithm

In both algorithms, the legs in air move forward while the
legs on the ground move backward in order to push the
body forward.

2.3 Balancing
The balancing problem is to let the robot keep

balance. To be specific, it means the baseboard of the robot
should always be parallel to the horizontal plane. To solve
this problem, the robot should use the data from a
gyroscope. The data is filtered by a Kalman filter to reduce
noise. Next, PID is used to do a negative feedback control.
Whenever the baseboard is leaning towards one direction,
the PID will require the robot to raise the side in that
direction and lower the side in the other direction.

2.4 Finite State Machine
Our robot can be controlled by humans wirelessly

or track a specific object (e.g. human face) by itself. The
overall finite state machine is shown in Fig.9. Initially, it is
in the connecting state. After connecting with the HC-05
module, it will be controlled by a joystick through
bluetooth. If the connection is lost, the robot will go back to
the connecting state. If the controller pushes the Button A,
it will start detecting a specific object, and it will keep
tracking the object autonomously until it becomes close
enough to the object or it cannot find it. In this project, the
object is set as humans’ face.

Fig.9 Finite state machine

The program of object tracking progress and the
FSM of obstacle avoidance will be specified in the
following parts. Since the robot should always avoid
collision, the obstacle avoidance can be run by a thread.

3. Capabilities

3.1 Object tracking
With the basic motion control and the camera, the

hexapod robot can identify the position of the object, turn
its direction and follow the object, which is the human face
in our project. To do that, we also need to detect the face
with the help of opencv. The hexapod robot has a server,
which runs on the Raspberry Pi OS, and a client, which can
be launched on our own computer. The client will send
commands to the server and control the robot, it can also
show the data sent from the server such as video stream
data. Fig.10 shows the interface of the client receiving
video stream data transmitted from the server.

Fig.10 The client interface



Based on the motion control, we can easily send
commands to the robot and make it move in any direction
and turn both sides.The logic of face tracking is shown in
Fig.11. We start a thread on the client side to keep detecting
the position of the human face and send commands to
control the server. If the face is on the left side of the video
window, the robot needs to turn left and point right to the
human face. Then if it is on the right side, as shown in Fig
10, we need to turn to the other side. Otherwise, the robot
can simply move forward and approach our target.

However, the actual implementation doesn’t show
the exact result we want. We find that the latency of video
transmission is high, and the image captured from the
video stream is often delayed for a few seconds. That’s why
in the video the robot would rotate for a few seconds, its
movements are based on the image it detected seconds
before. We believed this is because the Raspberry Pi 3B+
doesn’t have enough power to send real-time video stream
data and tried to fix this problem by only using the server
side to reduce the cost of transmitting. Unfortunately, it
didn’t solve the problem either, so the transmitting cost is
not the major problem, Raspberry Pi 3B+ with 1G memory
just couldn’t deal with real-time video. So the video shows
that this capability has a little delay.

Fig.11 Object tracking process

3.2 Bluetooth Control
In order to allow humans to control the robot to

move around, we use a joystick for the input of direction
and velocity, and then transfer the data to the robot through
bluetooth.

The joystick consists of two rheostats. Both of
them provide a number ranging from 0 to 1023, which will
be mapped to -10 to 10 as the velocity along x and y axes

through a map function. The direction can be calculated in
2 ways. The first method is to let the robot always faces
forward, so the direction of the robot is calculated by:

where ɑ is the angle between the direction and x axis and vx

and vy are the velocity along the x and y axes. The other
method is to use the ɑ as the angular velocity, which allows
the robot to change the direction it will face. These two
ways can be shifted by the switch in the joystick.

The data transmission is based on the classic
bluetooth transmission protocol because the transmission
speed is faster than BLE. Therefore, we use HC-05
bluetooth module and the rfcomm package in the Raspberry
Pi system for receiving messages. The numbers in the
messages are extracted by using the re package in Python.
To make the robot respond to each command more quickly,
a thread is created to let the robot move towards a direction
for a short time after receiving a message.

3.3 Obstacle Avoidance
With the basic motion control, we can use python

threading to do obstacle avoidance. We use thread1 to
process the recovery logic when the robot encounters an
obstacle, and thread2 to keep receiving the data from the
ultrasonic sensor, and thread3 to send the command to go
forward.

The basic logic of obstacle avoidance is shown in
Fig.12 as a finite state machine. The three threads start at
the same time. Initially the robot goes forward, and if the
data from the ultrasonic sensor shows that there is an
obstacle less than 10 cm from the robot on the front, it will
first go backward for a const period of time and then turn
around to find a direction that has no obstacles, and this
recovery process is done by thread1.

So far, with multithreading, the robot can finish
the task of obstacle avoidance well.

Fig.12 Finite State Machine for Obstacle Avoidance



4. Course topics
Table.1 Related course topics in each capability

Sensors &
actuators

FSM Multitasking

Object
tracking

The server
uses the
camera to
capture
video data.

The
movement of
the robot is
based on the
position of the
face, which
changes
between turn
left, turn fight
and move
forward.

The client
launches multiple
threads to detect
faces and send
commands to the
server.

Bluetooth
control

It uses a
joystick as
an input
device to
control the
motors on
the robot to
move
around.

The
movement of
the robot is
based on the
input value of
the velocities
along x and y
axes. It can
move towards
a direction
with or
without
rotation.

It launches a
main function and
a thread. The
main function
gets the data from
the messages by
bluetooth. The
thread controls
the robot to move
towards a
direction for a
short time after
receiving a
message.

Obstacle
avoidance

It uses the
ultrasonic
sensor to
detect
obstacles.

The basic
logic can be
shown as a
FSM, which
describes the
task
transformation
of the robot.

It uses three
threads to let the
robot move
forward, receive
ultrasonic data,
and do the
recovery after
encountering
obstacles.

5. Challenges
In the first capability of object tracking, we found

that the Raspberry Pi 3B+ couldn’t handle real-time video

data efficiently and bring latency to face detection. We have
tried our best to reduce the latency in different ways but the
problem still remains. This capability would definitely be
more fluent with the help of the GSI. Besides, somehow the
voltage provided by the battery is unstable, that’s why
sometimes the robot in the video moves really slow and
even falls on the ground.

In the capability of obstacle avoidance, we didn’t
encounter much trouble without the GSI. The only thing is
that it may be more convenient for us to get one or two
more ultrasonic sensors to detect obstacles in other
directions from the GSI.

In addition, the bluetooth connection is not stable.
Although the HC-05 is paired and connected with the
Raspberry Pi board, it often disconnects by itself and
sometimes receives nothing. Sometimes it doesn’t allow
reconnection, and the reasons are various. It may be
because a connection port cannot be released, or because of
some errors from the package bluez. Looking for possible
solutions on the Internet is time-consuming. In most cases,
the only way to solve the problem is to reboot the system.

6. Future
Based on what we have done so far, we can extend

this project in several aspects. First, for the capability of
face detection, we can use deep learning models
specifically designed for embedded systems, such as
MobileNet, which raises the accuracy of face detection.
Second, one ultrasonic sensor is not enough for perfect
obstacle detection, we can use more sensors to detect
obstacles in all directions. Finally, we would like to
redesign the gait algorithm to make the robot move in four
legs, leave the two front legs carrying stuff like boxes and
give the robot the capability of transportation.

Acknowledgement
Though the strike has influenced this course, we

still want to give our appreciation to the professor and
GSIs. This project can be done without their effort through
this whole semester. Alvin discussed the project idea with
us, Shishir also helped us in machine learning algorithms
on embedded system and Xiaoman gave a lot of support on
hardware.



Reference
[1] Seide, K., Faschingbauer, M., Wenzl, M.E., Weinrich,

N. and Juergens, C. (2004), A hexapod robot external
fixator for computer assisted fracture reduction and
deformity correction. Int. J. Med. Robotics Comput.
Assist. Surg., 1: 64-69. https://doi.org/10.1002/rcs.6

https://doi.org/10.1002/rcs.6

